How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.

نویسندگان

  • Zachary F Lerner
  • Matthew S DeMers
  • Scott L Delp
  • Raymond C Browning
چکیده

Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the predi...

متن کامل

The Effect of High Heel Shoes on Tibiofemoral and Patellofemoral joint Contact Forces and Muscle Forces

Introduction: High heel shoes affect the knee joint and can cause arthritis in the tibiofemoral (TFJ) and patellofemoral joints (PFJ). There is a dearth of research investigating the contact forces of TFJ and PFJ. Therefore, the purpose of this study was to assess the effect of high heel shoes on muscle forces as well as TFJ, and PFJ contact forces during walking.   Materials & Methods: A tot...

متن کامل

Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees

BACKGROUND Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relat...

متن کامل

In vivo Kinematics of the Knee after a Posterior Cruciate-Substituting Total Knee Arthroplasty: A Comparison between Caucasian and South Korean Patients

PURPOSE This study compared in vivo kinematic differences between Caucasian and South Korean patients after a posterior-substituting total knee arthroplasty (PS-TKA). MATERIALS AND METHODS In vivo motions of 9 Caucasian and 13 South Korean knees with a PS-TKA during weight bearing single leg lunge were determined using a dual fluoroscopic imaging technique. Normalized tibiofemoral condylar mo...

متن کامل

Contribution of tibiofemoral joint contact to net loads at the knee in gait.

Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2015